6 research outputs found

    Sensor Proxy Mobile IPv6 (SPMIPv6)—A Novel Scheme for Mobility Supported IP-WSNs

    Get PDF
    IP based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health-care, home automation, environmental monitoring, industrial control, vehicle telematics and agricultural monitoring. In all these applications, mobility in the sensor network with special attention to energy efficiency is a major issue to be addressed. Host-based mobility management protocols are not suitable for IP-WSNs because of their energy inefficiency, so network based mobility management protocols can be an alternative for the mobility supported IP-WSNs. In this paper we propose a network based mobility supported IP-WSN protocol called Sensor Proxy Mobile IPv6 (SPMIPv6). We present its architecture, message formats and also evaluate its performance considering signaling cost, mobility cost and energy consumption. Our analysis shows that with respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 60% and 56%, as well as the mobility cost by 62% and 57%, compared to MIPv6 and PMIPv6, respectively. The simulation results also show that in terms of the number of hops, SPMIPv6 decreases the signaling cost by 56% and 53% as well as mobility cost by 60% and 67% as compared to MIPv6 and PMIPv6 respectively. It also indicates that proposed scheme reduces the level of energy consumption significantly

    A Survey on Virtualization of Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization

    A Novel Addressing Scheme for PMIPv6 Based Global IP-WSNs

    Get PDF
    IP based Wireless Sensor Networks (IP-WSNs) are being used in healthcare, home automation, industrial control and agricultural monitoring. In most of these applications global addressing of individual IP-WSN nodes and layer-three routing for mobility enabled IP-WSN with special attention to reliability, energy efficiency and end to end delay minimization are a few of the major issues to be addressed. Most of the routing protocols in WSN are based on layer-two approaches. For reliability and end to end communication enhancement the necessity of layer-three routing for IP-WSNs is generating significant attention among the research community, but due to the hurdle of maintaining routing state and other communication overhead, it was not possible to introduce a layer-three routing protocol for IP-WSNs. To address this issue we propose in this paper a global addressing scheme and layer-three based hierarchical routing protocol. The proposed addressing and routing approach focuses on all the above mentioned issues. Simulation results show that the proposed addressing and routing approach significantly enhances the reliability, energy efficiency and end to end delay minimization. We also present architecture, message formats and different routing scenarios in this paper

    An IoT- and Cloud-Based E-Waste Management System for Resource Reclamation with a Data-Driven Decision-Making Process

    No full text
    IoT-based smart e-waste management is an emerging field that combines technology and environmental sustainability. E-waste is a growing problem worldwide, as discarded electronics can have negative impacts on the environment and public health. In this paper, we have proposed a smart e-waste management system. This system uses IoT devices and sensors to monitor and manage the collection, sorting, and disposal of e-waste. The IoT devices in this system are typically embedded with sensors that can detect and monitor the amount of e-waste in a given area. These sensors can provide real-time data on e-waste, which can then be used to optimize collection and disposal processes. E-waste is like an asset to us in most cases; as it is recyclable, using it in an efficient manner would be a perk. By employing machine learning to distinguish e-waste, we can contribute to separating metallic and plastic components, the utilization of pyrolysis to transform plastic waste into bio-fuel, coupled with the generation of bio-char as a by-product, and the repurposing of metallic portions for the development of solar batteries. We can optimize its use and also minimize its environmental impact; it presents a promising avenue for sustainable waste management and resource recovery. Our proposed system also uses cloud-based platforms to help analyze patterns and trends in the data. The Autoregressive Integrated Moving Average, a statistical method used in the cloud, can provide insights into future garbage levels, which can be useful for optimizing waste collection schedules and improving the overall process

    On the (in)Security of the Control Plane of SDN Architecture: A Survey

    No full text
    Software-Defined Networking (SDN) has revolutionized the networking landscape by offering programmable control and optimization of network resources. However, SDN architecture’s inherent flexibility and centralized control expose it to new security risks. In this paper, we have presented a comprehensive study focused on the security implications associated with the control plane of SDN, which serves as a critical layer responsible for its network orchestration. We have addressed some pressing security concerns in SDN deployments by examining control plane vulnerabilities and explicit attacks. Through extensive analysis, we have investigated various control plane attacks. By meticulously exploring each attack vector, we have shed light on its mechanisms, potential impact and countermeasures. Furthermore, we have emphasized the interdependencies between the control plane, application plane, and data plane, highlighting how compromises in the control plane can propagate and impact the entire network infrastructure. Our research contributes to a deeper understanding of the specific vulnerabilities within SDN, focusing on the control plane as the primary target. By providing insights into the security landscape of SDN, network administrators, researchers, and security practitioners can develop proactive defense strategies and fortify the security posture of SDN deployments. We have underscored the importance of integrating robust security mechanisms to safeguard the control plane and maintain the overall security of SDN architectures. Our comprehensive analysis of control plane attacks in SDN elucidates the evolving security challenges posed by the programmability and centralization of network control. By addressing these vulnerabilities, we have tried to pave the way for future researchers to develop effective security solutions and ensure SDN networks’ resilience and integrity
    corecore